\begin{tabbing} $\forall$${\it es}$:ES, $x$, ${\it free}$:Id, $n$:$\mathbb{N}$, $e$:E. \\[0ex]@loc($e$)($x$:Id) \\[0ex]$\Rightarrow$ ($\neg$(($x$ after $e$) = ($x$ when $e$) $\in$ Id)) \\[0ex]$\Rightarrow$ $<$$n$, 0$>$ $<$ rank($e$) \\[0ex]$\Rightarrow$ ($\exists$\=${\it e'}$:E\+ \\[0ex](${\it e'}$ $\leq$loc $e$ \\[0ex]\& rank(${\it e'}$) = $<$$n$, 1$>$ $\in$ (:$\mathbb{N}$ $\times$ $\mathbb{N}$) \\[0ex]\& ($\neg$(($x$ after ${\it e'}$) = ($x$ when ${\it e'}$) $\in$ Id)) \\[0ex]\& (($\uparrow$$x$ changed before ${\it e'}$) $\Rightarrow$ (($x$ when ${\it e'}$) = ${\it free}$)))) \- \end{tabbing}